Rapid Freeze-Quench ENDOR of the Radical X Intermediate of Escherichia coli Ribonucleotide Reductase Using ¹⁷O₂, H₂¹⁷O, and ²H₂O

Doug Burdi,[†] Bradley E. Sturgeon,[‡] Wing H. Tong,[†] JoAnne Stubbe,*,[†] and Brian M. Hoffman*,[‡]

> Departments of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Northwestern University Evanston. Illinois 60208-3113

Received August 7, 1995

Proteins containing diferrous clusters are capable of carrying out reactions with O_2 , whose diversity is comparable to that shown by the well-characterized heme systems.^{1,2} In particular, the diiron center in ribonucleotide reductase (RNR) is important because its formation is accompanied by the oxidation of a tyrosine residue 122 to the tyrosyl radical that initiates the catalytic nucleotide reduction process.^{3,4} A variety of rapidkinetics methods, including stopped-flow absorption, rapid freeze-quench (RFQ) EPR, and Mössbauer spectroscopies, have been used to investigate the mechanism by which the incubation of the apo R2 subunit of Escherichia coli RNR with Fe²⁺ and O₂ leads to the self-assembly of its diferric cluster and the formation of the radical cofactor (•Y122-R2).⁵ These studies revealed the formation of a diiron intermediate (X) that directly "ignites the pilot light" of RNR by oxidizing Y122-R2 to the tyrosyl radical. This intermediate has a spin of $S = \frac{1}{2}$ and a formal [Fe(III),Fe(IV)] oxidation state, although it has been described in terms of two high-spin Fe³⁺ ions spin-coupled with a ligand radical.^{6,7} The present paper reports the use of RFQ Q-band ¹⁷O and ¹H electron-nuclear double resonance (EN-DOR) spectroscopy^{8,9} to study the intermediate X generated in the presence of either ¹⁷O₂ or H₂¹⁷O, or ²H₂O. The ENDOR measurements allow us to examine the fate of the two atoms from O_2 and to test for solvent-derived H_xO ligands to the irons.

Proton ENDOR spectra¹⁰ of X in H₂O and D₂O show signals from strongly-coupled protons that are lost upon exchange in D₂O buffer (Figure 1) and that are undoubtedly associated with protonated oxygenic ligand(s). The EPR spectrum of X does not show resolved g-anisotropy at X-band,^{5,6} but at Q-band it is characteristic of a rhombic g-tensor¹¹ and exhibits sufficient anisotropy ($g_1 \approx 2.007$, $g_2 \approx 1.999$, $g_3 \approx 1.994$) to permit ENDOR to estimate full hyperfine tensors from orientation-

(2) Stubbe, J. Curr. Opin. Struct. Biol. 1991, 1, 788-795.
 (3) Sjöberg, B. M.; Reichard, P.; Gräslund, A.; Ehrenberg, A. J. Biol. Chem. 1977, 252, 535-541.

(4) Atkin, C. L.; Thelander, L.; Reichard, P.; Lang, G. J. Biol. Chem. 1973, 248, 7464-7472

(5) Bollinger, J. M., Jr.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. J. Am. Chem. Soc. **1994**, *116*, 8015–8023. (6) Ravi, N.; Bollinger, J. M., Jr.; Huynh, B. H.; Edmondson, D. E.;

Stubbe, J. J. Am. Chem. Soc. 1994, 116, 8007-8014.

(7) Ravi, N.; Bominaar, E. L. *Inorg. Chem.* **1995**, *34*, 1040–1043.
(8) Hoffman, B. M.; DeRose, V. J.; Doan, P. E.; Gurbiel, R. J.;

Houseman, A. L. P.; Telser, J. In EMR of Paramagnetic Molecules; Berliner, L. J., Reuben, J., Eds.; Biological Magnetic Resonance 13; Plenum Press: New York, 1993; pp 151–218. (9) DeRose, V. J.; Hoffman, B. M. In *Methods in Enzymology*; Sauer,

K., Ed.; Academic Press: New York, 1995; pp 555-589.

(10) Q-band CW ENDOR spectra were collected as described previously (Werst, M. M.; Davoust, C. E.; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 1533-1538), using bandwidth broadening (100 kHz) of the radio frequency as described (Hoffman, B. M.; DeRose, V. J.; Ong, J.-L.; Davoust, C. E. J. Magn. Reson., Ser. A 1994, 110, 52-57).

(11) Wertz, J. E.; Bolton, J. R. Electron spin resonance: elementary theory and practical applications, 2nd ed.; Chapman and Hall: New York, 1986.

Figure 1. Representative Q-band, CW ¹H ENDOR spectra for X, centered at the proton Larmor frequency, $\nu_{\rm H} \sim 53$ MHz. At each field, the upper spectrum is for a sample in H₂O, the lower for D₂O. Conditions:¹⁰ ν (microwave) \approx 35.3 GHz; 100 kHz modulation amplitude, 8 Gpp; rf scan speed, 1 MHz/s; T = 2 K.

selective spectra taken at numerous fields throughout the EPR envelope.⁸ Orientation selection is illustrated by the changes in the ¹H pattern as the field of observation is moved across the EPR envelope (Figure 1). For $g \ge 1.996$, the breadth of the pattern is determined by a class of exchangeable proton with a highly anisotropic coupling. Between g_1 and $\sim g_2$, the breadth corresponds to a hyperfine splitting $A(^{1}\text{H1}) \approx 21$ MHz, with the $\nu_{-} = \nu_{\rm H} - A({}^{1}{\rm H1})/2$ branch of the signal showing a lower intensity than the $\nu_{+} = \nu_{\rm H} + A({}^{1}{\rm H1})/2$ one, except at the lowfield g_1 edge of the EPR envelope. As the field is increased toward $\sim g_2$, the coupling begins to decrease, tending toward $A(^{1}\text{H1}) \approx 0$ MHz at g₃. An additional exchangeable feature, most clearly seen from $\sim g_2$ to g_3 in the ν_- branch ($\nu < \nu_{\rm H}$) is tentatively assigned to a second class of exchangeable proton, with $A(^{1}\text{H2}) \approx 10$ MHz at g_{3} .¹²

Q-band CW ENDOR spectra of X without ¹⁷O enrichment show resonances from the ¹⁴N of histidine ligands to Fe in the region $\nu \leq 15$ MHz, as illustrated by the g_2 signal in Figure 2. When X is prepared with ¹⁷O₂ gas (86% enriched),¹³ a new signal appears in the range $15 \le \nu \le 25$ MHz (Figure 2), which we assign as the ν_+ branch of an ¹⁷O ENDOR pattern for a site denoted O_a. In a spectrum taken at g_3 , it is centered at $\nu_+ =$ $A_3/2 + \nu(^{17}\text{O}) \approx 20$ MHz, corresponding to $A_3 \approx 25$ MHz; no additional ¹⁷O signals are seen at higher frequency. The ~ 4.5 MHz breadth of the pattern is assigned to unresolved ¹⁷O

Massachusetts Institute of Technology.

^{*} Northwestern University. (1) Feig, A. L.; Lippard, S. J. Chem. Rev. **1994**, *94*, 759–805.

⁽¹²⁾ Efforts are under way to explore similarities of these signals with those of the hydroxo bridge and water of mixed-valence diiron centers (DeRose, V. J.; Liu, K. E.; Kurtz, D. M., Jr.; Hoffman, B. M.; Lippard, S. J. J. Am. Chem. Soc. 1993, 155, 6440-6441. DeRose, V. J.; Liu, K. E.; Lippard, S. J.; Hoffman, B. M. J. Am. Chem. Soc. 1996, 118, 121-134.

Figure 2. Representative CW ENDOR data for X prepared¹³ with ¹⁷O₂, $H_2^{17}O$, and H_2O . For the ¹⁷O₂ sample, g_1 and g_2 data are scaled by ¹/₂ for $\nu > 14$ MHz. At g_3 , \bullet represents $A({}^{17}O_a)/2$; the line, $\nu({}^{17}O)$; the final brace, the quadrupole breadth. Conditions:¹⁰ as in Figure 1 except scan speed, 0.5 MHz/s.

quadrupole splittings.^{8,14} The pattern's center does not shift as the field is lowered to g_2 , giving $A_2 \approx 25$ MHz; it then increases in frequency, and by g_1 , the hyperfine coupling is $A_1 \approx 31$ MHz, with some structure also appearing that may reflect quadrupolar effects or site heterogeneity. This signal is assigned to a single ¹⁷O, because EPR simulations¹⁵ indicate that contributions from two ¹⁷O nuclei with similar couplings would give substantially greater EPR line-broadening than observed.5

The ENDOR experiment was repeated with the sample in $H_2^{17}O$ (32% enriched),¹³ and at all fields (g-values), we obtained spectra from a strongly-coupled ¹⁷O site, denoted Os, that exhibits ν_+ patterns similar to those of O_a in the ¹⁷ O_2 sample (Figure 2). The shapes of the signals from the two samples are not identical in detail, with the high-frequency edges of the pattern for $H_2^{17}O$ being less resolved at g_2 and g_3 ; this likely reflects differences in quadrupole tensors. Nonetheless, the values of $A(^{17}O)$ for the $^{17}O_s$ species derived from water are quite similar to those of the ${}^{17}O_a$ species derived from dioxygen gas at all observed fields.

It might be suggested that X does not contain two oxygenic species with separate sources, but rather that an oxygen from $H_2^{17}O$ solvent exchanges into a site that is initially derived from O_2 gas, and that the spectral differences in the figure reflect differences in the spin-relaxation properties of the two samples, not in the ¹⁷O couplings themselves. However, this alternative is countered by resonance Raman studies which show that the oxo bridge of the diferric cluster is derived from O₂.¹⁶ Indeed, the ENDOR data argue against exchange: the height of the ¹⁷O signal at g_3 for the ¹⁷O₂ sample, as normalized to the sharp ¹⁴N peak at 10 MHz, is \sim 2.5 times more intense than that for the $H_2^{17}O$ signal, consistent with the ~2.7-fold higher enrichment of ¹⁷O₂.¹³

One of the atoms of O₂ is detected by ENDOR as ¹⁷O_a, but what about the second? Close examination of the low-frequency region of the ENDOR spectra at g₂ (Figure 2) shows a welldefined peak at ~9 MHz for the sample prepared from ${}^{17}O_2$, but not for the unenriched or H₂¹⁷O samples; furthermore, at g_3 , the intensity in that region is greater in the ${}^{17}O_2$ than in the $H_2^{17}O$ spectrum. We assign these features as part of the ν_+ branch of a second oxygen derived from ¹⁷O₂, denoted ¹⁷O_b, whose hyperfine couplings are much smaller than those of ${}^{17}O_a$; preliminary studies on a sample doubly labeled with ¹⁷O and ¹⁵N support the assignment.¹⁷

The ¹⁷O ENDOR results thus have detected three exogenous O atoms associated with X. Both atoms of the reactant O₂ remain bound, and one of these, Oa, has properties that are similar to those of the solvent-derived ¹⁷O_s. The ¹H data show strongly-coupled, exchangeable proton(s) associated with one or more of these sites. These results for X could be discussed in terms of a model that involves a diferric center coupled to an O radical or an oxo (hydroxo)-bridged, trapped-valence [FeIII- $(S = \frac{5}{2})$, Fe^{IV}(S = 2)] center. ⁵⁷Fe ENDOR measurements in progress show that one of the Fe sites of X has an anisotropic hyperfine tensor, and therefore at least some Fe^{IV} character.¹⁷ In addition, a model compound that exhibits a di- μ -oxo-bridged trapped-valence center has been shown to exhibit many of the properties of X.¹⁸ Following this model, two of the three exogenous O atoms shown here to be part of X would correspond to bridging oxo (hydroxo) ligands, and one a terminal aquo/hydroxo. Experiments under way¹⁷ will permit a definitive description of X.

Acknowledgment. We acknowledge the technical support of Mr. C. E. Davoust. This work has been supported by the NIH [HL 13531 (B.M.H.), GM 29595 (J.S.)] and by the American Cancer Society (Postdoctoral Fellowship to D.B.).

JA952651E

⁽¹³⁾ Preparation of X in the presence of ${}^{17}O_2$ or $H_2{}^{17}O$ for analysis by ENDOR spectroscopy: The RFQ experiments were carried out by W. H.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. Methods Enzymol., in press). An argon-saturated solution of apo-Y122F-R2 (600 µM) in 100 mM Hepes, pH 7.7, was transferred to one drive syringe attached to an Update Instruments System 1000. A solution of FeSO₄ (3.10 mM in 5 mN H₂SO₄) was attached to a vacuum manifold and degassed by standard procedures. The solution was then equilibrated with ${}^{17}O_2$ (85.4% ${}^{17}O$; from Isotec) at 5 °C and then transferred to the second syringe. The reaction was initiated by mixing equal volumes of these solutions at 5 °C and quenched at 610 ms into an ENDOR tube. For the $H_2^{17}O$ experiments, apo-Y122F-R2 (536 μ M) was prepared in 100 mM Hepes, pH 7.7, which contained 26% H₂¹⁷O and the solution was saturated with ¹⁶O₂ and placed in a drive syringe. A solution of FeSO₄ (2.82 mM in 5 mN H_2 SO₄) was prepared in H_2^{110} (37 atom % ¹⁷O), saturated with ¹⁶O₂, and loaded into a second syringe. The reaction was carried out as described above, yielding a final enrichment of \sim 32% H₂¹⁷O.

⁽¹⁴⁾ Werst, M. M.; Kennedy, M. C.; Beinert, H.; Hoffman, B. M. Biochemistry 1990, 29, 10526-10532.

⁽¹⁵⁾ Nilges, M. J. Ph.D. Dissertation, University of Illinois, Urbana, IL, 1979.

⁽¹⁶⁾ Ling, J.; Sahlin, M.; Sjöberg, B. M.; Loehr, T. M.; Sanders-Loehr, J. J. Biol. Chem. **1994**, 269, 5595-5601.

⁽¹⁷⁾ Sturgeon, B. E.; Burdi, D.; Stubbe, J.; Hoffman, B. M., unpublished results

⁽¹⁸⁾ Dong, Y.; Que, L., Jr.; Kauffmann, K.; Münck, E. J. Am. Chem. Soc. **1995**, *117*, 11377–11378.